good app!
the fonts are cool, unique and fun to use especially w/ friends! works just fine. 𝘒𝘌𝘌𝘗 𝘐𝘛 UP!
Ja, Fonts X for iPhone ist kostenlos herunterzuladen, enthält jedoch In-App-Käufe oder Abonnements.
‼️️ Die Fonts X for iPhone App scheint verdächtig zu sein. Viele Bewertungen wirken gefälscht oder manipuliert. Seien Sie vorsichtig.
Fonts X for iPhone bietet mehrere In-App-Käufe/Abonnements, der durchschnittliche In-App-Preis beträgt 2,276.67 ₱.
Um geschätzte Einnahmen der Fonts X for iPhone-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.
4.67 von 5
1,996 Bewertungen in Philippinen
the fonts are cool, unique and fun to use especially w/ friends! works just fine. 𝘒𝘌𝘌𝘗 𝘐𝘛 UP!
Good and nice
Nice!
Dan
Helps me so muchh
𝐒𝐨𝐥𝐢𝐝
Absolutely! The **weighted average method** is used when different components of a score have varying levels of importance. Instead of just averaging all values equally, this method accounts for their respective **weights**. ### **Step-by-Step Explanation** #### **1. Understand the Components** Each score belongs to a category, like quizzes, exams, or projects, and each category has a specific weight. Example breakdown: - **Quizzes** (20% of total grade) - **Exams** (40% of total grade) - **Projects** (40% of total grade) #### **2. Multiply Each Score by Its Weight** For each component, multiply the **score earned** by its respective **weight (in decimal form).** Example student scores: - Quiz score: **85** → 85 \times 0.2 = 17 - Exam score: **90** → 90 \times 0.4 = 36 - Project score: **80** → 80 \times 0.4 = 32 #### **3. Add the Weighted Scores Together** \text{Final Grade} = 17 + 36 + 32 = 85 This means the student’s **final grade is 85** based on the weighted categories. ### **Why Use Weighted Averages?** - Ensures that **more important components** (like exams) have a larger impact on the final grade. - Reflects performance **more accurately** than a simple average. Would you like to try calculating an example together? 𝐇𝐣𝐮𝐮𝐮𝐮𝐮Absolutely! The **weighted average method** is used when different components of a score have varying levels of importance. Instead of just averaging all values equally, this method accounts for their respective **weights**. ### **Step-by-Step Explanation** #### **1. Understand the Components** Each score belongs to a category, like quizzes, exams, or projects, and each category has a specific weight. Example breakdown: - **Quizzes** (20% of total grade) - **Exams** (40% of total grade) - **Projects** (40% of total grade) #### **2. Multiply Each Score by Its Weight** For each component, multiply the **score earned** by its respective **weight (in decimal form).** Example student scores: - Quiz score: **85** → 85 \times 0.2 = 17 - Exam score: **90** → 90 \times 0.4 = 36 - Project score: **80** → 80 \times 0.4 = 32 #### **3. Add the Weighted Scores Together** \text{Final Grade} = 17 + 36 + 32 = 85 This means the student’s **final grade is 85** based on the weighted categories. ### **Why Use Weighted Averages?** - Ensures that **more important components** (like exams) have a larger impact on the final grade. - Reflects performance **more accurately** than a
𝐌𝐢𝐜
𝐏𝐞𝐫𝐟𝐞𝐜𝐭
Nice
|
Diagramm
|
Kategorie
|
Rang
|
|---|---|---|
|
Top Kostenlos
|
|
472
|