AWS Machine Learning Exam Prep

MLSC01 Quiz and Practice Exams

Veröffentlicht von: DjamgaTech

Beschreibung

Use this App to learn about Machine Learning on AWS and prepare for the AWS Machine Learning Specialty Certification MLS-C01.
Earning AWS Certified Machine Learning Specialty validates expertise in building, training, tuning, and deploying machine learning (ML) models on AWS.
The App provides hundreds of quizzes and practice exam about:
- Machine Learning Operation on AWS
- Modelling
- Data Engineering
- Computer Vision,
- Exploratory Data Analysis,
- ML implementation & Operations
- Machine Learning Basics Questions and Answers
- Machine Learning Advanced Questions and Answers
- Scorecard
- Countdown timer
- Machine Learning Cheat Sheets
- Machine Learning Interview Questions and Answers
- Machine Learning Latest News
The App covers Machine Learning Basics and Advanced topics including: NLP, Computer Vision, Python, linear regression, logistic regression, Sampling, dataset, statistical interaction, selection bias, non-Gaussian distribution, bias-variance trade-off, Normal Distribution, correlation and covariance, Point Estimates and Confidence Interval, A/B Testing, p-value, statistical power of sensitivity, over-fitting and under-fitting, regularization, Law of Large Numbers, Confounding Variables, Survivorship Bias, univariate, bivariate and multivariate, Resampling, ROC curve, TF/IDF vectorization, Cluster Sampling, etc.
Domain 1: Data Engineering
Create data repositories for machine learning.
Identify data sources (e.g., content and location, primary sources such as user data)
Determine storage mediums (e.g., DB, Data Lake, S3, EFS, EBS)
Identify and implement a data ingestion solution.
Data job styles/types (batch load, streaming)
Data ingestion pipelines (Batch-based ML workloads and streaming-based ML workloads), etc.

Domain 2: Exploratory Data Analysis
Sanitize and prepare data for modeling.
Perform feature engineering.
Analyze and visualize data for machine learning.
Domain 3: Modeling
Frame business problems as machine learning problems.
Select the appropriate model(s) for a given machine learning problem.
Train machine learning models.
Perform hyperparameter optimization.
Evaluate machine learning models.
Domain 4: Machine Learning Implementation and Operations
Build machine learning solutions for performance, availability, scalability, resiliency, and fault
tolerance.
Recommend and implement the appropriate machine learning services and features for a given
problem.
Apply basic AWS security practices to machine learning solutions.
Deploy and operationalize machine learning solutions.
Machine Learning Services covered:
Amazon Comprehend
AWS Deep Learning AMIs (DLAMI)
AWS DeepLens
Amazon Forecast
Amazon Fraud Detector
Amazon Lex
Amazon Polly
Amazon Rekognition
Amazon SageMaker
Amazon Textract
Amazon Transcribe
Amazon Translate
Other Services and topics covered are:
Ingestion/Collection
Processing/ETL
Data analysis/visualization
Model training
Model deployment/inference
Operational
AWS ML application services
Language relevant to ML (for example, Python, Java, Scala, R, SQL)
Notebooks and integrated development environments (IDEs),
S3, SageMaker, Kinesis, Lake Formation, Athena, Kibana, Redshift, Textract, EMR, Glue, SageMaker, CSV, JSON, IMG, parquet or databases, Amazon Athena
Amazon EC2, Amazon Elastic Container Registry (Amazon ECR), Amazon Elastic Container Service, Amazon Elastic Kubernetes Service , Amazon Redshift

Important: To succeed with the real exam, do not memorize the answers in this app. It is very important that you understand why a question is right or wrong and the concepts behind it by carefully reading the reference documents in the answers.

Note and disclaimer: We are not affiliated with Microsoft or Azure or Google or Amazon. The questions are put together based on the certification study guide and materials available online. The questions in this app should help you pass the exam but it is not guaranteed. We are not responsible for any exam you did not pass.
Ausblenden Mehr anzeigen...

Screenshots

AWS Machine Learning Exam Prep Häufige Fragen

  • Ist AWS Machine Learning Exam Prep kostenlos?

    Ja, AWS Machine Learning Exam Prep ist komplett kostenlos und enthält keine In-App-Käufe oder Abonnements.

  • Ist AWS Machine Learning Exam Prep seriös?

    Nicht genügend Bewertungen, um eine zuverlässige Einschätzung vorzunehmen. Die App benötigt mehr Nutzerfeedback.

    Danke für die Stimme

  • Wie viel kostet AWS Machine Learning Exam Prep?

    AWS Machine Learning Exam Prep ist kostenlos.

  • Wie hoch ist der Umsatz von AWS Machine Learning Exam Prep?

    Um geschätzte Einnahmen der AWS Machine Learning Exam Prep-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.

Benutzerbewertung
Die App ist in Argentinien noch nicht bewertet.
Bewertungsverlauf

AWS Machine Learning Exam Prep Bewertungen

Keine Bewertungen in Argentinien
Die App hat noch keine Bewertungen in Argentinien.

Store-Rankings

Ranking-Verlauf
App-Ranking-Verlauf noch nicht verfügbar
Kategorien-Rankings
App ist noch nicht gerankt

AWS Machine Learning Exam Prep Konkurrenten

Name
AWS Certified Database In 2021
Exam DBS-C01 [NEW]
AWS SysOps Admin Updated 2024
258 high-quality questions
AWS SAA Exam Prep
AWS Exam Prep
AWS SAA-C02 Certification
Solutions Architect Associate
AWS SAA-C02 Certification Exam
AWS Solution Architect Tests
AWS DevOps Engineer (DOP-C01)
AWS DOP-C01 Certification
AWS SAA Self Study
200+ practice questions
AWS DAS-C01 Certification Exam
Data Analytics Practice Tests
AWS Certified Machine Learning
Exam MLS-C01 (Pass 100%)
AWS Certified 2024
AWS Certified NO.1 Problem set

AWS Machine Learning Exam Prep Installationen

Letzte 30 Tage

AWS Machine Learning Exam Prep Umsatz

Letzte 30 Tage

AWS Machine Learning Exam Prep Einnahmen und Downloads

Gewinnen Sie wertvolle Einblicke in die Leistung von AWS Machine Learning Exam Prep mit unserer Analytik.
Melden Sie sich jetzt an, um Zugriff auf Downloads, Einnahmen und mehr zu erhalten.
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.