Model Dermatol - Wiki

AI Assistant for Skin Diseases

Veröffentlicht von: Iderma

Beschreibung

Artificial intelligence can analyze the provided photograph and instantly help find information about your skin problem. The algorithm provides relevant medical information on skin diseases (e.g., warts, shingles), skin cancer (e.g., melanoma), and other skin rashes (e.g., hives). In the 2022 Stiftung Warentest, a German consumer organization, this app received satisfaction ratings only slightly lower than paid telemedicine dermatology services.
- Please capture skin photographs and submit them for analysis. The cropped images will be transferred, but we will not store your data.
- The algorithm provides links to websites that describe the relevant signs and symptoms of skin disease and skin cancer (e.g. melanoma).
- With the ability to classify images of 186 skin diseases, the algorithm covers common types of skin disorders such as atopic dermatitis, hive, eczema, psoriasis, acne, rosacea, wart, onychomycosis, shingles, melanoma, and nevus.
- The use of the algorithm is FREE.
However, please keep in mind the following disclaimer:
- This app is an image search tool, NOT A DIAGNOSTIC APP. The disease name provided in the contents of the links is not the final diagnosis of skin cancer or a skin disorder.
- Although the contents are informative, please CONSULT A DOCTOR before making any medical decisions.
We utilize the "Model Dermatology" algorithm. The classifier's performance has been published in several prestigious medical journals. Numerous collaborative studies have been conducted with various hospitals internationally, including Seoul National University, Ulsan University, Yonsei University, Hallym University, Inje University, Stanford, MSKCC, and Ospedale San Bortolo.
- Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
- Performance of a deep neural network in teledermatology: a single center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
- Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
- Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
- Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
- Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
- Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
- Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
- Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
- Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Lesions Suspected of Skin Neoplasms in a Real-World Setting: A Prospective Controlled Before and After Study. PLOS One, 2022
- Evaluation of Artificial Intelligence-assisted Diagnosis of Skin Neoplasms – a single-center, paralleled, unmasked, randomized controlled trial. J Invest Dermatol. 2022
* Disclaimer
- Please seek a doctor's advice in addition to using this app and before making any medical decisions.
- The diagnosis of skin cancer or skin disorder based solely on clinical images may miss up to 10% of cases. Therefore, this app cannot substitute for standard care (in-person examination).
- The algorithm's prediction is not the final diagnosis of skin cancer or skin disorder. It serves only to provide personalized medical information for reference
Ausblenden Mehr anzeigen...

Screenshots

Model Dermatol - Wiki Häufige Fragen

  • Ist Model Dermatol - Wiki kostenlos?

    Ja, Model Dermatol - Wiki ist komplett kostenlos und enthält keine In-App-Käufe oder Abonnements.

  • Ist Model Dermatol - Wiki seriös?

    Nicht genügend Bewertungen, um eine zuverlässige Einschätzung vorzunehmen. Die App benötigt mehr Nutzerfeedback.

    Danke für die Stimme

  • Wie viel kostet Model Dermatol - Wiki?

    Model Dermatol - Wiki ist kostenlos.

  • Wie hoch ist der Umsatz von Model Dermatol - Wiki?

    Um geschätzte Einnahmen der Model Dermatol - Wiki-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.

Benutzerbewertung

4.67 von 5

6 Bewertungen in Belgien

5 star
4
4 star
2
3 star
0
2 star
0
1 star
0
Bewertungsverlauf

Model Dermatol - Wiki Bewertungen

Keine Bewertungen in Belgien
Die App hat noch keine Bewertungen in Belgien.

Store-Rankings

Ranking-Verlauf
Kategorien-Rankings
Diagramm
Kategorie
Rang
Top Kostenlos
117
Top Kostenlos
136
Top Kostenlos
233
Top Kostenlos
260
Top Kostenlos
278

Model Dermatol - Wiki Konkurrenten

Name
Aysa
Skinive MD - AI Dermatology
For MD's, nurses, beauticians.
Skin-Check
The Future of Early Detection
DermEngine
Smart skin analytics software
Miiskin Skin Tracker & eHealth
Skin cancer, acne & mole care
Dermoscopy Two Step Algorithm
Usatine Media
Dermatology First Derm
Online dermatologist
YOUdermoscopy
Skin Check: Dermatology App
Skin Check: AI Derm Scanner
Mole & Acne Checker | Skincare

Model Dermatol - Wiki Installationen

Letzte 30 Tage

Model Dermatol - Wiki Umsatz

Letzte 30 Tage

Model Dermatol - Wiki Einnahmen und Downloads

Gewinnen Sie wertvolle Einblicke in die Leistung von Model Dermatol - Wiki mit unserer Analytik.
Melden Sie sich jetzt an, um Zugriff auf Downloads, Einnahmen und mehr zu erhalten.
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.