Standard Deviation Calculate

Veröffentlicht von: 天一 邓

Beschreibung

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values.A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range.
Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter sigma σ, for the population standard deviation, or the Latin letter s, for the sample standard deviation.
Application examples
The practical value of understanding the standard deviation of a set of values is in appreciating how much variation there is from the average (mean).
Experiment, industrial and hypothesis testing[
Standard deviation is often used to compare real-world data against a model to test the model. For example, in industrial applications the weight of products coming off a production line may need to comply with a legally required value. By weighing some fraction of the products an average weight can be found, which will always be slightly different from the long-term average. By using standard deviations, a minimum and maximum value can be calculated that the averaged weight will be within some very high percentage of the time (99.9% or more). If it falls outside the range then the production process may need to be corrected. Statistical tests such as these are particularly important when the testing is relatively expensive. For example, if the product needs to be opened and drained and weighed, or if the product was otherwise used up by the test.
In experimental science, a theoretical model of reality is used. Particle physics conventionally uses a standard of "5 sigma" for the declaration of a discovery. A five-sigma level translates to one chance in 3.5 million that a random fluctuation would yield the result. This level of certainty was required in order to assert that a particle consistent with the Higgs boson had been discovered in two independent experiments at CERN,also leading to the declaration of the first observation of gravitational waves, and confirmation of global warming.
Weather
As a simple example, consider the average daily maximum temperatures for two cities, one inland and one on the coast. It is helpful to understand that the range of daily maximum temperatures for cities near the coast is smaller than for cities inland. Thus, while these two cities may each have the same average maximum temperature, the standard deviation of the daily maximum temperature for the coastal city will be less than that of the inland city as, on any particular day, the actual maximum temperature is more likely to be farther from the average maximum temperature for the inland city than for the coastal one.
Finance
In finance, standard deviation is often used as a measure of the risk associated with price-fluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a portfolio of assets (actively managed mutual funds, index mutual funds, or ETFs). Risk is an important factor in determining how to efficiently manage a portfolio of investments because it determines the variation in returns on the asset and/or portfolio and gives investors a mathematical basis for investment decisions (known as mean-variance optimization). The fundamental concept of risk is that as it increases, the expected return on an investment should increase as well, an increase known as the risk premium. In other words, investors should expect a higher return on an investment when that investment carries a higher level of risk or uncertainty. When evaluating investments, investors should estimate both the expected return and the uncertainty of future returns. Standard deviation provides a quantified estimate of the uncertainty of future returns.
Ausblenden Mehr anzeigen...

In-App-Käufe

标准差计算器专业版
14.99 lei

Screenshots

Standard Deviation Calculate Häufige Fragen

  • Ist Standard Deviation Calculate kostenlos?

    Ja, Standard Deviation Calculate ist kostenlos herunterzuladen, enthält jedoch In-App-Käufe oder Abonnements.

  • Ist Standard Deviation Calculate seriös?

    ‼️️ Die Standard Deviation Calculate App scheint verdächtig zu sein. Viele Bewertungen wirken gefälscht oder manipuliert. Seien Sie vorsichtig.

    Danke für die Stimme

  • Wie viel kostet Standard Deviation Calculate?

    Standard Deviation Calculate bietet mehrere In-App-Käufe/Abonnements, der durchschnittliche In-App-Preis beträgt 14.99 lei.

  • Wie hoch ist der Umsatz von Standard Deviation Calculate?

    Um geschätzte Einnahmen der Standard Deviation Calculate-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.

Benutzerbewertung
Die App ist in Rumänien noch nicht bewertet.
Bewertungsverlauf

Standard Deviation Calculate Bewertungen

垃圾

👑斤斤计较 on

China

垃圾

很好用

Saber之02 on

China

很好用

不错

男明星dhsnns on

China

很不错

不错

moon1991 on

China

挺好用的!!!!!!!

good

jack12345987 on

China

good

解放双手!

朝雾暮云间 on

China

简单计算可以一步到位

好棒 很可以

1846837848 on

China

挺好用的

klkajsisjjzzjzjzj on

China

贝恩施

哦工资姐妹们 on

China

他用我我😄😄😄啊哈哈哈哈

111

Rungutan on

China

111

Store-Rankings

Ranking-Verlauf
App-Ranking-Verlauf noch nicht verfügbar
Kategorien-Rankings
App ist noch nicht gerankt

标准差计算器 Installationen

Letzte 30 Tage

标准差计算器 Umsatz

Letzte 30 Tage

Standard Deviation Calculate Einnahmen und Downloads

Gewinnen Sie wertvolle Einblicke in die Leistung von 标准差计算器 mit unserer Analytik.
Melden Sie sich jetzt an, um Zugriff auf Downloads, Einnahmen und mehr zu erhalten.

App-Informationen

Kategorie
Utilities
Herausgeber
天一 邓
Sprachen
English, Chinese
Letzte Veröffentlichung
1.1 (vor 2 Jahren )
Veröffentlicht am
Dec 19, 2021 (vor 3 Jahren )
Zuletzt aktualisiert
vor 3 Monaten
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.