Uncertainty Calculator

Error Propagation

Veröffentlicht von: Roman Volinsky

Beschreibung

Uncertainty Calculator evaluates the error propagation throughout the mathematical expressions comprised of variables of uncertain value.

The application allows input of up to three value-error pairs (A, B and C), that can be used as a parameters in the final expression.

Error values should be provided in absolute (100 +/- 5) or in relative format, the latter should appear in percent format (100 +/- 5%).

The evaluated expression can include numerous functions, that provided by row of the appropriate buttons.

Components and functions can be added directly to the expression field by pressing the corresponding buttons. To encompass expression into the preset formula, select the expression and press the corresponding formula button.

Particular attention should be paid to placing brackets to avoid equation ambiguity.
The application deals with independent, random errors. So if this is a case never use A + A, but rather 2*A and never A*A*A but rather A^3! Obviously, different parameters can be combined in any way (A+B or C *A^2 .. is perfectly fine).

Angles for trigonometric functions can be provided in degrees or radians, and that should be reflected by setting a yellow button to "DEG" or "RAD". Bear in mind the importance of
units in any of calculations!


Implementation Examples:
1.The charge passing through an electrical circuit is defined by: Q = I * t, where I is the current and t is the time. Calculate the total charge value when a current of 0.15 ± 0.01 A passes through the circuit for 120 ± 1 s:
Input: A = 0.15 ± 0.01, B = 120 ± 1
The final expression will be A*B, and press Calculate:
The final value will be: 18 ± 1.2
Thus, it can be reported the total charge as 18 C ± 1 C.

Important! One should only report as many significant figures as are consistent with estimated error! So the value should be rounded to the rightmost decimal place at which error applies.

2. A ball is tossed straight up into the air with initial speed vo = (4.0± 0.2) m/s. After a time
t = (0.60 ± 10%) s, the height of the ball is h = vo*t - 0.5gt^2 = 0.636 m (g = 9.80 m/s^2). What is the value and uncertainty of height?
Input: A = vo = 4.0 ± 0.2, and B = t = 0.60 ± 10%, then the final expression should be:
A*B – 0.5*9.8*B^2
The final value will be: 0.6 ± 0.4 (meters).
Ausblenden Mehr anzeigen...

Screenshots

Uncertainty Calculator Häufige Fragen

  • Ist Uncertainty Calculator kostenlos?

    Uncertainty Calculator ist nicht kostenlos (es kostet 14.90), enthält jedoch keine In-App-Käufe oder Abonnements.

  • Ist Uncertainty Calculator seriös?

    Nicht genügend Bewertungen, um eine zuverlässige Einschätzung vorzunehmen. Die App benötigt mehr Nutzerfeedback.

    Danke für die Stimme

  • Wie viel kostet Uncertainty Calculator?

    Der Preis von Uncertainty Calculator beträgt 14.90.

  • Wie hoch ist der Umsatz von Uncertainty Calculator?

    Um geschätzte Einnahmen der Uncertainty Calculator-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.

Benutzerbewertung
Die App ist in Peru noch nicht bewertet.
Bewertungsverlauf

Uncertainty Calculator Bewertungen

Keine Bewertungen in Peru
Die App hat noch keine Bewertungen in Peru.

Store-Rankings

Ranking-Verlauf
App-Ranking-Verlauf noch nicht verfügbar
Kategorien-Rankings
App ist noch nicht gerankt

Uncertainty Calculator Installationen

Letzte 30 Tage

Uncertainty Calculator Umsatz

Letzte 30 Tage

Uncertainty Calculator Einnahmen und Downloads

Gewinnen Sie wertvolle Einblicke in die Leistung von Uncertainty Calculator mit unserer Analytik.
Melden Sie sich jetzt an, um Zugriff auf Downloads, Einnahmen und mehr zu erhalten.

App-Informationen

Kategorie
Education
Herausgeber
Roman Volinsky
Sprachen
English
Letzte Veröffentlichung
3.8 (vor 3 Monaten )
Veröffentlicht am
May 27, 2020 (vor 4 Jahren )
Zuletzt aktualisiert
vor 1 Woche
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.