Vectors and Planes

N/V

Veröffentlicht von: Yuri Morozov

Beschreibung

“Vectors and Planes” App helps visualize and understand 3D linear and quadric structures and their intersections.
List of linear structures and combinations:
1. Two vector combination.
2. Plane.
3. Line and plane combination.
4. Two plane combination.
5. Three plane combination.
Current list of quadric structures:
1. Two sphere combination.
2. Standard ellipsoid.
3. Ellipsoid in a form of positive-definite matrix.
4. Standard cone.
5. Cone in a form of indefinite matrix.
6. 1-sheet hyperboloid.
7. 1-sheet hyperboloid in a form of indefinite matrix.
8. 2-sheet hyperboloid.
9. 2-sheet hyperboloid in a form of indefinite matrix.
10. Standard cylinder.
11. Cylinder in a form of positive-semidefinite matrix.
12. Hyperbolic paraboloid.
13. Elliptic paraboloid.
Current list of combinations of quadric and linear structures:
1. Matrix ellipsoid and line.
2. Standard ellipsoid and plane.
3. Matrix ellipsoid and plane.
4. Matrix cone and line.
5. Standard cone and plane.
6. 1-sheet hyperboloid in matrix form and line.
7. 2-sheet hyperboloid in matrix form and line.
8. Matrix cylinder and line.
9. Elliptic paraboloid and line.
10. Hyperbolic paraboloid and line.
Interactive 3D graphs are provided for all of the above.
Step by step calculation algorithms are provided for all intersection point sets.
Many of the algorithms are based on Linear Algebra concepts. Those, in turn, are explained in our “Matrix Solver Step by Step” app.
Version 10 was completely redesigned.
Developers hope to get feedback from users at [email protected].
Ausblenden Mehr anzeigen...

Screenshots

Vectors and Planes Häufige Fragen

  • Ist Vectors and Planes kostenlos?

    Ja, Vectors and Planes ist komplett kostenlos und enthält keine In-App-Käufe oder Abonnements.

  • Ist Vectors and Planes seriös?

    Nicht genügend Bewertungen, um eine zuverlässige Einschätzung vorzunehmen. Die App benötigt mehr Nutzerfeedback.

    Danke für die Stimme

  • Wie viel kostet Vectors and Planes?

    Vectors and Planes ist kostenlos.

  • Wie hoch ist der Umsatz von Vectors and Planes?

    Um geschätzte Einnahmen der Vectors and Planes-App und weitere AppStore-Einblicke zu erhalten, können Sie sich bei der AppTail Mobile Analytics Platform anmelden.

Benutzerbewertung
Die App ist in Malaysia noch nicht bewertet.
Bewertungsverlauf

Vectors and Planes Bewertungen

A new way to understand vectors

sammoroz on

Vereinigte Staaten

The field of vector and plane geometry is, even if daunting, fascinating. Unfortunately, public schools usually do not tap into the power of the vector beyond a surface level, even in AP Physics and upper-level math, so most people’s understanding of vectors is minimal and/or faulty. Vectors&Planes does more than simply give you answers to vector problems. It walks you through, step by step, how vectors are formed and interact with one another. A particular helpful technique is to download this app and ‘Matrix Solver Step by Step’ by the same developer and see the foundations of planar geometry in a new light. For the aspiring applied mathematician or STEM major, these apps are not only highly educational and enriching but lots of fun to play with.

Store-Rankings

Ranking-Verlauf
App-Ranking-Verlauf noch nicht verfügbar
Kategorien-Rankings
App ist noch nicht gerankt

Vectors and Planes Konkurrenten

Name
Graphing Calculator AR
by Pacific Tech
Waves: Partial Diff Eq
Matrix-Analysis
Eigenvalue, Eigenvector, Solve
Vector Gem
App for 3D Vectormath
Vectorize
Derivative-Calculus
Partial derivative tree, ODE
Linear Algebra - Matrix Solver
Matrix and Vectors operations
Vector calculator Math Physics
Operations on vectors
ODE-Solver-Integrator
Integrate Solve Simulate Graph
ALG Math Solver
N/V

Vectors and Planes Installationen

Letzte 30 Tage

Vectors and Planes Umsatz

Letzte 30 Tage

Vectors and Planes Einnahmen und Downloads

Gewinnen Sie wertvolle Einblicke in die Leistung von Vectors and Planes mit unserer Analytik.
Melden Sie sich jetzt an, um Zugriff auf Downloads, Einnahmen und mehr zu erhalten.