Standard Deviation Calculate

Statistics average calculator

Разработчик: 天一 邓

Описание

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values.A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, while a high standard deviation indicates that the values are spread out over a wider range.
Standard deviation may be abbreviated SD, and is most commonly represented in mathematical texts and equations by the lower case Greek letter sigma σ, for the population standard deviation, or the Latin letter s, for the sample standard deviation.
Application examples
The practical value of understanding the standard deviation of a set of values is in appreciating how much variation there is from the average (mean).
Experiment, industrial and hypothesis testing[
Standard deviation is often used to compare real-world data against a model to test the model. For example, in industrial applications the weight of products coming off a production line may need to comply with a legally required value. By weighing some fraction of the products an average weight can be found, which will always be slightly different from the long-term average. By using standard deviations, a minimum and maximum value can be calculated that the averaged weight will be within some very high percentage of the time (99.9% or more). If it falls outside the range then the production process may need to be corrected. Statistical tests such as these are particularly important when the testing is relatively expensive. For example, if the product needs to be opened and drained and weighed, or if the product was otherwise used up by the test.
In experimental science, a theoretical model of reality is used. Particle physics conventionally uses a standard of "5 sigma" for the declaration of a discovery. A five-sigma level translates to one chance in 3.5 million that a random fluctuation would yield the result. This level of certainty was required in order to assert that a particle consistent with the Higgs boson had been discovered in two independent experiments at CERN,also leading to the declaration of the first observation of gravitational waves, and confirmation of global warming.
Weather
As a simple example, consider the average daily maximum temperatures for two cities, one inland and one on the coast. It is helpful to understand that the range of daily maximum temperatures for cities near the coast is smaller than for cities inland. Thus, while these two cities may each have the same average maximum temperature, the standard deviation of the daily maximum temperature for the coastal city will be less than that of the inland city as, on any particular day, the actual maximum temperature is more likely to be farther from the average maximum temperature for the inland city than for the coastal one.
Finance
In finance, standard deviation is often used as a measure of the risk associated with price-fluctuations of a given asset (stocks, bonds, property, etc.), or the risk of a portfolio of assets (actively managed mutual funds, index mutual funds, or ETFs). Risk is an important factor in determining how to efficiently manage a portfolio of investments because it determines the variation in returns on the asset and/or portfolio and gives investors a mathematical basis for investment decisions (known as mean-variance optimization). The fundamental concept of risk is that as it increases, the expected return on an investment should increase as well, an increase known as the risk premium. In other words, investors should expect a higher return on an investment when that investment carries a higher level of risk or uncertainty. When evaluating investments, investors should estimate both the expected return and the uncertainty of future returns. Standard deviation provides a quantified estimate of the uncertainty of future returns.
Скрыть Показать больше...

Встроенные покупки

标准差计算器专业版
$90.00

Скриншоты

Standard Deviation Calculate Частые Вопросы

  • Приложение Standard Deviation Calculate бесплатное?

    Да, Standard Deviation Calculate можно скачать бесплатно, однако в приложении есть встроенные покупки или подписки.

  • Является ли Standard Deviation Calculate фейковым или мошенническим?

    ‼️️ Приложение Standard Deviation Calculate кажется подозрительным. Многие отзывы выглядят поддельными или манипулированными. Будьте осторожны.

    Спасибо за ваш голос

  • Сколько стоит Standard Deviation Calculate?

    Standard Deviation Calculate имеет несколько покупок/подписок внутри приложения, средняя цена покупки составляет $90.00.

  • Сколько зарабатывает Standard Deviation Calculate?

    Чтобы получить оценку дохода приложения Standard Deviation Calculate и другие данные AppStore, вы можете зарегистрироваться на платформе мобильной аналитики AppTail.

Оценки пользователей

3 из 5

2 оценок в Тайвань

5 star
1
4 star
0
3 star
0
2 star
0
1 star
1
История оценок

Standard Deviation Calculate Отзывы Пользователей

垃圾

👑斤斤计较 on

Китай

垃圾

很好用

Saber之02 on

Китай

很好用

不错

男明星dhsnns on

Китай

很不错

不错

moon1991 on

Китай

挺好用的!!!!!!!

good

jack12345987 on

Китай

good

解放双手!

朝雾暮云间 on

Китай

简单计算可以一步到位

好棒 很可以

1846837848 on

Китай

挺好用的

klkajsisjjzzjzjzj on

Китай

贝恩施

哦工资姐妹们 on

Китай

他用我我😄😄😄啊哈哈哈哈

111

Rungutan on

Китай

111

Оценки

История позиций в топах
История рейтингов пока не доступна
Позиции в категории
Приложение еще не было в топах

标准差计算器 Установки

30дн.

标准差计算器 Доход

30дн.

Standard Deviation Calculate Доходы и Загрузки

Получите ценные инсайты о производительности 标准差计算器 с помощью нашей аналитики.
Зарегистрируйтесь сейчас, чтобы получить доступ к статистика загрузок и доходов и многому другому.

Информация о приложении

Категория
Utilities
Разработчик
天一 邓
Языки
English, Chinese
Последнее обновление
1.1 (2 года назад )
Выпущено
Dec 19, 2021 (3 года назад )
Обновлено
2 дня назад
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.