Macro3M

Macro Analysis Tools

Разработчик: Chu-Yi Chang
Скачивания
Доход

Описание

Macro3M uses mathematical statistics and machine learning models to analyze the impact of U.S. economic indicators on the market, find the rules and build a generalized model. Through the model, you can enter specific economic indicator data to predict the market performance next month. You can use the predicted value of the model to help you analyze the impact of economic indicators on the market. In the long run, the market always fluctuates around the economy and tends to the same direction.
Economic Indicators:
Economic indicators are statistics about economic activity. The dataset analyzed by Macro3M contains 14 U.S. economic indicators from 1967 to 2023, 4 of which are highly correlated with the U.S. market. The 4 indicators are "M2 Money Supply", "Producer Price Index", "Industrial Production Index" and "Nonfarm Payrolls". These indicators help analyze the overall performance of the economy.
Algorithms and Models:
Macro3M uses three "Deep learning algorithms" to build three generalization models. The evaluation metric for these models is to minimize the mean absolute error (MAE) between the predicted value and the target value. Macro3M has long tracked the MAE performance of nine "Machine learning models" and the final results show that "Deep learning models" outperform traditional "Machine learning models”.
MLP Model:
MLP is very flexible and can usually be used to learn the mapping from input to output.
A multilayer perceptron (MLP) is an artificial neural network that can be used to classify data or predict outcomes based on the input characteristics provided by each training example. It is also known as the basic architecture of deep neural networks.
RNN Model:
RNN mainly deals with the prediction of sequence or time series data.
The difference between RNNs and other neural networks is that they consider time and sequence and have a time dimension. For sequential data, RNNs are favored because their patterns allow the network to discover dependencies on historical data.
LSTM Model:
LSTM is a special kind of RNN that can learn long-term dependencies between data.
LSTMs are essentially an improved version of RNNs. LSTMs add a way to pass information across multiple time steps to interpret longer sequences of data.
Скрыть Показать больше...

Скриншоты

Macro3M Частые Вопросы

  • Приложение Macro3M бесплатное?

    Да, Macro3M полностью бесплатное и не содержит встроенных покупок или подписок.

  • Является ли Macro3M фейковым или мошенническим?

    Недостаточно отзывов для надежной оценки. Приложению нужно больше отзывов пользователей.

    Спасибо за ваш голос

  • Сколько стоит Macro3M?

    Приложение Macro3M бесплатное.

  • Сколько зарабатывает Macro3M?

    Чтобы получить оценку дохода приложения Macro3M и другие данные AppStore, вы можете зарегистрироваться на платформе мобильной аналитики AppTail.

Оценки пользователей
Приложение еще не оценено в Азербайджан.
История оценок

Macro3M Отзывы Пользователей

Нет отзывов в Азербайджан
Приложение пока не имеет отзывов в Азербайджан.

Оценки

История позиций в топах
История рейтингов пока не доступна
Позиции в категории
Приложение еще не было в топах

Ключевые слова

Macro3M Доходы и Загрузки

Получите ценные инсайты о производительности Macro3M с помощью нашей аналитики.
Зарегистрируйтесь сейчас, чтобы получить доступ к статистика загрузок и доходов и многому другому.

Информация о приложении

Категория
Utilities
Разработчик
Chu-Yi Chang
Языки
English, French, German, Italian, Japanese, Korean, Russian, Chinese, Spanish, Chinese
Последнее обновление
3.2 (1 год назад )
Выпущено
Nov 24, 2020 (4 года назад )
Обновлено
5 дней назад
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.