SMS Sift - Escort messages

Give you a clean blue sky

Разработчик: 新俊 方
Скачивания
Доход

Описание

"SMS Sift" is a safe, efficient and professional SMS filter that can help you filter spam messages from unknown phone numbers through custom filter rules.
"SMS Sift" is based on the Core ML machine learning framework to filter spam SMS offline on the device side, which can accurately identify spam SMS through semantics, so that you are protected from the harassment of blocked SMS
"SMS Sift" is a tool for sending SMS quickly, SMS templates for New Year holidays, workplace business and other scenarios, so that you will never worry about the content of SMS. Just pick up your phone to find the template to copy and paste, one-click group sending, simple operation, efficient and convenient!Built-in massive SMS, you can choose

**Characteristic**
• Add an unlimited number of custom filter rules
• No need for network permission, safe and reliable filtering of spam SMS, privacy is not leaked
• "Blacklist" and "Whitelist" dual list filtering mode, filter spam SMS while ensuring that important SMS messages are not mistakenly filtered
• Built-in inspector lets you test and validate filtering rules
• Easily set up defined filter rules
** Gather everyone's efforts to make the identification of the APP more accurate **
"SMS Sift" uses statistical-based machine learning algorithms to learn from hundreds of thousands of various SMS samples. Without the user configuring any keywords, it can accurately determine whether the received SMS is a normal SMS, a public welfare SMS or an advertising harassment SMS by identifying the semantic characteristics of an SMS.
If the APP has a judgment error, you can report SMS samples in the App to help the APP further improve the accuracy, the more submissions, the higher the accuracy.
** Privacy Policy: What information does SMS Blocker collect? **
SMS Sift runs in a closed and secure environment provided by iOS, is a completely offline app, doesn't even ask for network permission (until you first report spam to us), reads, collects, or tags your text messages. We rely on a wide range of users to proactively report spam messages to us to build a sample library of machine learning.
"SMS Sift" will not collect any of your information, let alone upload your SMS content, if you are careful enough, you will find that Panda will not ask for network permission, completely offline operation.
If you voluntarily submit a sample text message to us, the text of the redacted SMS and a number that you mark as spam or not will be collected, only these two data.
Скрыть Показать больше...

Скриншоты

SMS Sift Частые Вопросы

  • Приложение SMS Sift бесплатное?

    SMS Sift не является бесплатным (стоимость составляет 0.99), однако оно не содержит встроенных покупок или подписок.

  • Является ли SMS Sift фейковым или мошенническим?

    Недостаточно отзывов для надежной оценки. Приложению нужно больше отзывов пользователей.

    Спасибо за ваш голос

  • Сколько стоит SMS Sift?

    Цена SMS Sift составляет 0.99.

  • Сколько зарабатывает SMS Sift?

    Чтобы получить оценку дохода приложения SMS Sift и другие данные AppStore, вы можете зарегистрироваться на платформе мобильной аналитики AppTail.

Оценки пользователей
Приложение еще не оценено в Узбекистан.
История оценок

SMS Sift Отзывы Пользователей

Нет отзывов в Узбекистан
Приложение пока не имеет отзывов в Узбекистан.

Оценки

История позиций в топах
История рейтингов пока не доступна
Позиции в категории
Приложение еще не было в топах

SMS Sift Установки

30дн.

SMS Sift Доход

30дн.

SMS Sift Доходы и Загрузки

Получите ценные инсайты о производительности SMS Sift с помощью нашей аналитики.
Зарегистрируйтесь сейчас, чтобы получить доступ к статистика загрузок и доходов и многому другому.
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.