Modular Arithmetic

Calculate in remainders mod n

Разработчик: Benjamin Burton
Скачивания
Доход

Описание

A calculator for arithmetic modulo N. It lets you choose a fixed modulus, and then make lots of calculations without having to press a "mod" button again and again. It also:
- follows the order convention;
- supports arbitrarily large numbers;
- performs fast modular division and exponentiation;
- can show a full transcript of your calculation.
Modular arithmetic is a "calculus of remainders". It features throughout mathematics and computer science, and has applications from cryptography to barcodes to music.
The basic idea is that you choose a modulus N, and then reduce every number to one of the integers 0,1,2,...,N−1 according to what remainder it leaves when dividing by N.
For example, using a modulus of 17:
40 ≡ 6 (since 40 ÷ 17 leaves a remainder of 6);
17 ≡ 0 (since 17 ÷ 17 leaves no remainder at all).
Arithmetic follows these same rules. Still using a modulus of 17:
15 + 7 ≡ 5 (since 22 ≡ 5);
3 × 9 ≡ 10 (since 27 ≡ 10);
5 ^ 3 ≡ 6 (since 125 ≡ 6).
Subtraction and division behave in a way that complements addition and multiplication:
−1 ≡ 16 (since 16 + 1 = 17 ≡ 0);
1/2 ≡ 9 (since 9 × 2 = 18 ≡ 1);
4 - 7 ≡ 14 (since 14 + 7 = 21 ≡ 4);
7 ÷ 3 = 8 (since 8 × 3 = 24 ≡ 7).
There are no negative numbers or fractions: like −1 and 7 ÷ 3 in the examples above, these are also reduced to one of 0,1,...,N−1.
As usual, you cannot divide by zero. You also cannot divide if the right hand side has any common factors with the modulus. If we change our modulus to 10, then the following operations all generate errors:
3 ÷ 20 (since 20 ≡ 0);
7 ÷ 8 (since 8 and 10 have a common factor of 2).
Integers can be arbitrarily large. For instance, if we set our modulus to 2305843009213693951 (a Mersenne prime), then:
5 ^ 2305843009213693950 ≡ 1 (by Fermat's little theorem).
The code is written carefully, and is backed up by a thorough suite of 186 automated tests.
This app supports external keyboards, Siri Shortcuts, and (on iPad) Slide Over, Split View, and multiple windows.
Скрыть Показать больше...

Скриншоты

Modular Arithmetic Частые Вопросы

  • Приложение Modular Arithmetic бесплатное?

    Да, Modular Arithmetic полностью бесплатное и не содержит встроенных покупок или подписок.

  • Является ли Modular Arithmetic фейковым или мошенническим?

    Недостаточно отзывов для надежной оценки. Приложению нужно больше отзывов пользователей.

    Спасибо за ваш голос

  • Сколько стоит Modular Arithmetic?

    Приложение Modular Arithmetic бесплатное.

  • Сколько зарабатывает Modular Arithmetic?

    Чтобы получить оценку дохода приложения Modular Arithmetic и другие данные AppStore, вы можете зарегистрироваться на платформе мобильной аналитики AppTail.

Оценки пользователей
Приложение еще не оценено в Эквадор.
История оценок

Modular Arithmetic Отзывы Пользователей

Нет отзывов в Эквадор
Приложение пока не имеет отзывов в Эквадор.

Оценки

История позиций в топах
История рейтингов пока не доступна
Позиции в категории
Приложение еще не было в топах

Modular Arithmetic Установки

30дн.

Modular Arithmetic Доход

30дн.

Modular Arithmetic Доходы и Загрузки

Получите ценные инсайты о производительности Modular Arithmetic с помощью нашей аналитики.
Зарегистрируйтесь сейчас, чтобы получить доступ к статистика загрузок и доходов и многому другому.
This page includes copyrighted content from third parties, shared solely for commentary and research in accordance with fair use under applicable copyright laws. All trademarks, including product, service, and company names or logos, remain the property of their respective owners. Their use here falls under nominative fair use as outlined by trademark laws and does not suggest any affiliation with or endorsement by the trademark holders.